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Reduced-gravity environments created by airplanes have a wide range of potential appli-
cations, such as astronaut training and scientific research in zero- or partial- gravity levels.
Reduced-gravity flights, casually called parabolic flights, can be achieved by making aircraft
follow specific trajectories. This work describes the physics behind reduced-gravity flights
and develops a flight control framework for a zero-gravity flight using a proof-mass-tracking
approach. During the zero-gravity parabola phase, aircraft has a zero local (non-gravitational)
acceleration and be in a state of free-fall, thus causing the sensation of weightlessness. Hence,
the control objective is to simultaneously compensate for aerodynamic drag using thrust control
and to make lift force zero by regulating the aircraft with the elevator. A triple-integral control
structure is adopted to overcome the unknown drag that is expected to grow quadratically with
time. Moreover, the position deviation from the reference object is measured in the cockpit
to enable a better control performance. Flight simulations are performed and visualized to
illustrate the proposed control strategy.

I. Nomenclature

CG = center of gravity
𝐴𝑅 = aspect ratio
F𝐸 = Earth-fixed inertial frame (𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸)
F𝐵 = body-fixed frame (𝑥𝐵, 𝑦𝐵, 𝑧𝐵)
F𝑆 = stability frame (𝑥𝑆 , 𝑦𝑆 , 𝑧𝑆)
𝑔 = gravitational acceleration constant on Earth
𝑄 = dynamic pressure
𝛼 = angle of attack (AOA)
𝛾 = flight path angle
\ = pitch angle
𝑢 = velocity component of the CG along the 𝑥𝐵 axis
𝑤 = velocity component of the CG along the 𝑧𝐵 axis
𝑞 = pitch rate of the CG along the 𝑦𝐵 axis
𝝎 = angular velocity vector of the CG in frame F𝐵

𝑥 = position component of the CG along the 𝑥𝐸 axis
𝑧 = position component of the CG along the 𝑧𝐸 axis
ℎ = altitude of the CG directed along the −𝑧𝐸 axis
𝐿 = lift force
𝐷 = drag force
𝑊 = weight
𝑇 = thrust
𝛿𝑒 = elevator deflection
𝑀 (𝛿𝑒) = pitch moment
𝑋 = non-gravitational force acting along the 𝑥𝐵 axis
𝑍 = non-gravitational force acting along the 𝑧𝐵 axis
𝑎𝑥 = “local” (non-gravitational) acceleration component of the CG along the 𝑥𝐵 axis
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𝑎𝑧 = “local” (non-gravitational) acceleration component of the CG along the 𝑧𝐵 axis
𝑛𝑥 = load factor along the 𝑥𝐵 axis
𝑛𝑧 = load factor along the 𝑧𝐵 axis
𝑔-level = an index for evaluating the magnitude of local acceleration
𝑉𝑜 = nominal velocity
𝛾𝑜 = nominal flight path angle
𝑒𝑡 = local tangential position error along the 𝑥𝐵 axis in frame F𝐵

𝑒𝑛 = local normal position error along the −𝑧𝐵 axis in frame F𝐵

_ = terrestrial longitude
𝜙 = geodetic latitude
𝑉𝑁 = geographic system north component of velocity over Earth
𝑉𝐸 = geographic system east component of velocity over Earth

II. Introduction

Reduced-gravity flights not only serve as a means for astronaut training but also contribute to a wide variety ofresearch fields such as fundamental physics, material science, and biomedical technology [1], paving the way for
taking humans farther into the solar system. Various platforms can be used to create microgravity, and each platform
generates different levels and durations, ranging from a few seconds to several months. Considering the reduced-gravity
flights, the reduced-gravity phase is generally achieved 30-60 times in an approximately 3-hour flight [2] as the aircraft
follows a trajectory where low gravity is “felt” in the reference frame of the vehicle. Zero-𝑔 flight is the most popular
form of reduced-𝑔 flights, and it can be achieved when the aircraft follows exactly a part of a low Earth orbit [3].
Currently, there are two companies offering gravity-free flights, that is, the Airbus A310 Zero G in France operated
by Novespace [4] and the modified Boeing 727 G-FORCE ONE operated by Zero-G [5]. Note that the actual flown
trajectories are not exactly parabolic but are elliptical; however, the flight maneuvers performed to simulate reduced
gravity are still called parabolic [6] to acknowledge Earth’s gravity is locally constant.
Even though reduced-gravity flights have already demonstrated their potential as Earth-based microgravity research

platforms, there is still room for improvement in the quality and duration of the reduced gravity experiments [7]. As
parabolic maneuvers are generally operated manually, the quality and period of reduced gravity depend significantly on
the pilots’ skills and weather conditions. Hence, this paper aims to explore the possibility of creating microgravity
with the help of the automatic flight control system, which not only allows us to provide consistent reduced-gravity
conditions but also opens up new possibilities of microgravity enabling fixed-wing unmanned aerial vehicles.
Our proposed control logic is inspired by a proof-mass-tracking scenario commonly used in drag-free satellites

[8, 9]. This paper concentrates on fixed-wing vehicle and builds upon Afman’s works in developing flight control
algorithms for a quadrotor [10–12]. The position of an aircraft with respect to the proof mass is constantly measured in
frame F𝐵 and fed back to the proposed controller, whose action results in the aircraft following the purely gravitational
orbit provided by the proof mass.
The advantage of using a free-floating proof mass is that it only requires the position deviation between the aircraft

and the proof mass to guide the vehicle to follow a drag-free trajectory, thus reducing the dependence on measurements
of aircraft states [13, 14]. One of the key features of the proposed control strategy is that we use triple-integral control
combined with state feedback to regulate the aircraft to the nominal drag-free trajectory.

III. Reduced-Gravity Flight Background
There are several ways to simulate reduced gravity on Earth, such as drop towers, parabolic flights, and ground-based

experimental devices [15]; for instance, Sanavandi and Guo developed a novel magnetic levitation-based low-gravity
simulator to serve as a durable and low-cost microgravity research platform [16]. Drop towers and reduced-𝑔 flights
are two most popular Earth-based ways to simulate near-space conditions. The critical drawbacks with drop towers
are the short test duration, generally 2-9 seconds [10], which is limited by the height of towers, and the considerable
upfront cost of necessary infrastructure. In contrast, reduced-𝑔 flights provide low-gravity conditions with durations
ranging from 20 to 40 seconds. Furthermore, although reduced-𝑔 flights require higher operating costs, the capital
expenditures on infrastructure are lower compared to drop towers. Also, they hold several competitive advantages
over drop towers, including the longer duration of reduced gravity, the capability of providing partial gravity and
accommodating large-scale experiments, and the accessibility to hypergravity before and after reduced-gravity period.
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A. Related research work in reduced-gravity aerial vehicles
Several studies on the design of control systems for reduced-gravity flight exist in the literature. For instance,

Mora-Camino and Achaibou [17] proposed a nonlinear inverse control law combined with a sliding controller under
the assumption of a constant throttle setting to improve the accuracy and duration of zero-gravity flights. Amato et al.
[18] performed a control scheme based on an online evaluation of the aircraft command signals needed to regulate
longitudinal and vertical load factors to zero, but the method has been reported to be computationally cumbersome.
Thus, an alternative to solve the nonlinear dynamic optimization problem was demonstrated in their follow-up work
[19]. Furthermore, the authors developed a control action consisting of a feedforward part guaranteeing good tracking
performance in the absence of external disturbances and feedback term employing gain-scheduled output feedback to
counteract possible misalignments. D’Antonio and Monaco [20] designed a nonlinear controller based on dynamical
feedback linearization to track a given parabolic trajectory.
Comprehensive theoretical analysis for the dynamics of parabolic flight involving flight characteristics and passengers’

perceptions can be found in [2], which inspired Hathaway and Jacob [14] to explore multiple options for microgravity
controllers. One approach is to equalize the throttle to the estimated drag and regulate the flight path angle to the nominal
angle along the ballistic trajectory. Another approach is to modulate lift force using elevator deflection. However, the
main challenge of these approaches is that drag is speed-dependent and cannot be easily measured nor estimated.
Other works on developing assisted flights simulators to help the pilot execute the maneuver precisely can be found

in [21] and [22]. Hosman and Kunen [21] presented flight director control laws incorporating a gain scheduler, a
predictor, and a sequencer to optimize the quality and duration of reduced-gravity conditions and to guarantee that the
limitations of aircraft were not exceeded. Brigos et al. [22] designed a computer simulator built on experimental data
from test flights to reproduce parabolic maneuvers to train aerobatic pilots.
Recently, Unmanned Aerial Vehicles (UAVs) have shown potential to be extended as a microgravity research

platform due to their increased availability and reliability. Early conceptual studies on fixed-wing UAVs can be found
in [13] and [23]. A Proportional-Integral (PI) pitch rate controller was proposed to continuously track the changing
pitch rate along the desired partial gravity trajectory, and an autonomously flown torque-controlled free-wing UAV was
subsequently designed to enable accurate microgravity maneuvers and decrease gust sensitivity. Experimental flight
tests were reported in [24] and [25], thus demonstrating the viability of using small UAVs as microgravity enabling
platforms.
Unlike fixed-wing aircraft, multi-rotors have the advantage of being able to perform simple 1-D vertical reduced-

gravity maneuvers. Afman et al. [10–12] devised a Proportional–Integral–Ramp–Quadratic (PIRQ) control architecture
to reject quadratic drag disturbances, which was experimentally validated through flight tests on a variable-pitch
quadrotor by performing a Martian parabola. The maneuver regulation approach and theoretical stability analysis using
transverse dynamics coordinate are detailed in [11, 26]. Kedarisetty established various approaches using a multirotor
to realize a constant gravity level, such as a gain compensation which varies the autopilot gains to counter the negative
effect of rotor aerodynamics [27], a nonlinear controller combined feedback linearization with sliding mode control
to improve robustness [28], and a differential flatness-based acceleration control law augmented with a parameter
estimation scheme to achieve high accuracy [29].
However, the downside of multirotors is the short duration of the microgravity phase of flight. Thus, we are interested

in designing a flight control framework for fixed-wing aircraft that uses as little information as possible to handle
reduced-gravity flights. This work adopts the proof-mass-tracking technique commonly used in drag-free satellites and
extends the triple-integral control architecture presented in [12] to 2-D parabolic maneuvers for zero-𝑔 flights.

B. Reduced-gravity flight maneuver
Unlike commercial flights, reduced-gravity flights require specially trained pilots and instrumentation to achieve a

high level of reduced-gravity precision. The maneuver is executed by three pilots simultaneously. The first pilot controls
the pitch angle to maintain the required 𝑔-level. The second pilot counters any movement in the roll axis and keeps the
wings level. The third pilot sits between the other two and adjusts the thrust levers to maintain the required level of
thrust during the maneuver [30, 31]; refer to Fig. 1.
Depending on the level of low gravity desired, the reduced-gravity environment can be maintained during the

maneuver for between 20 and 40 seconds within an aircraft flown along a precise trajectory that resembles an inverted
parabola. The typical zero-𝑔 maneuver is divided into the four stages of preparation, pull-up, parabola (or pushover),
and recovery, with each phase at a different 𝑔-level, see Fig. 2.
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Fig. 1 The Airbus ZERO-G performing a microgravity parabola (Credits: European Space Agency)

Fig. 2 Zero-gravity flight maneuver stage breakdown (Adapted from [31])

The aircraft begins the preparation phase in 1 𝑔 level flight and accelerates to specific airspeed and altitude entry
parameters. Once these parameters are achieved, the pull-up is initiated by smooth application of the aft movement of
the control yoke to attain between 1.5-1.8 𝑔. This pull-up phase leads to the maximum pitch attitude of the maneuver
at the planned entry altitude and airspeed, which triggers initiation of the reduced-gravity parabolic portion of the
maneuver. One pilot smoothly pushes forward on the yoke to attain and maintain the required 𝑔-level, reducing the
angle of attack, which results in a decrease in lift. Simultaneously, another pilot reduces thrust to a level just sufficient to
overcome drag. It should be noted that in reduced-𝑔 flights, stall speed is equal to unaccelerated stall speed scaled by
the square root of the load factor (or 𝑔) divided by the total aircraft weight. This implies that stall does not occur in
zero-𝑔 since the wings are not generating any lift. Also, notice that the microgravity phase of flight starts while the
aircraft is climbing and does not only happen when descending. During the initial microgravity phase, the aircraft has
upward velocity, but downward acceleration whose magnitude is equal to standard gravity [2].
After a 20-40 second reduced-gravity trajectory has elapsed, the negative pitch rate required to maintain the

reduced-gravity environment leads to the maneuver’s maximum pitch-down attitude \ = −45◦ and the recovery phase
begins. One pilot recovers the aircraft from the dive by smoothly reversing forward deflection of the yoke to aft deflection
to attain approximately 1.8-2 𝑔, while another pilot adjusts the thrust to avoid airframe overspeed and returns to 1 𝑔 level
flight. In order to reduce pilot workload in operating this specific maneuvers and improve the quality and duration of the
reduced-gravity phase, we study the dynamics of parabolic flights and then propose a automatic flight control system.

C. Inspiration from drag-free satellite
To develop our flight control framework, we choose to implement the concept of proof-mass-tracking to generate the

desired zero-𝑔 trajectory from any initial condition. The proof mass is an object inside a completely enclosed chamber
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within a vehicle, protected from the atmosphere by the vehicle itself, and is only subject to gravity. The drag-free
satellite tracks and maintains its position relative to the proof mass falling in its interior in order to maintain a perfect
weightless environment. Similarly, a pilot is able to hold a proof mass in their hand at the beginning of a pushover, float
the proof mass above their hand, and then maintain the proof mass in exactly the same position relative to the aircraft
during the maneuver. This allows the pilot to use the flight controls to maintain a zero-𝑔 environment inside the aircraft,
as long as the aircraft is kept in the same position relative to the proof mass. This scenario is supported in the absence of
any air conditioning or other cockpit environmen-induced forces on the proof mass. Therefore, an autopilot with a way
to track and maintain its position relative to a proof mass would be able to use the same principles to generate a zero-𝑔
environment. The position errors appear when we deviate from the nominal trajectory and can be used as the controller
input to calculate the required thrust and elevator deflection to eliminate the deviation between the cockpit and the proof
mass, as shown in Fig. 3.

Fig. 3 Proof-mass-tracking scenario by regulating thrust and the elevator

IV. Dynamic Analysis of Reduced-Gravity Flight
This section studies the longitudinal equations of motion to analyze the perception of acceleration that objects inside

the aircraft experience during flight. Two longitudinal models are presented for different purposes. More specifically, in
this work, the stability-axes model is used to design an automatic flight control system, while the body-axes model is
used to study the relationship between external forces and local acceleration.

A. Longitudinal equations of motion
We assume that the body 𝑥𝐵𝑧𝐵 plane is a plane of symmetry, which means lateral velocity 𝑣, roll rate 𝑝, and

yaw rate 𝑟 are negligible; roll and sideslip angles, 𝜙 and 𝛽, are zero during the parabolic maneuver. Thus, a 6-DoF
model could be decoupled to a 3-DoF model describing pure longitudinal motion. First, for the purpose of studying
the dynamic behavior along the nominal reduced-gravity trajectory, velocity equations in terms of the stability-axes
variables, airspeed and aerodynamic angles, are adopted. On the other hand, for analyzing the connection between the
forces acting on an airplane and the sensation of weight, the state equation expressed in terms of velocity components in
the aircraft body frame is the better choice [32]. A typical control vector of the longitudinal model is U = (𝑇, 𝛿𝑒) ∈ R2,
where 𝑇 is engine thrust and 𝛿𝑒 is elevator deflection. We present two 3-DoF longitudinal models in the following page.
For the more detailed mathematical derivation of aircraft longitudinal dynamics, we refer the reader to [32] and [33].
Figure 4 illustrates the definition of aerodynamic forces, moment, and angles.
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Fig. 4 Longitudinal forces, moments, and angles

We introduce two models:
1) Stability-axes longitudinal model with the state vector X = (𝑉, 𝛾, \, 𝑞) ∈ R4

¤𝑉 =
1
𝑚

(−𝐷 + 𝑇 cos𝛼 − 𝑚𝑔 sin 𝛾) (1)

¤𝛾 =
1
𝑚𝑉

(𝐿 + 𝑇 sin𝛼 − 𝑚𝑔 cos 𝛾) (2)

¤\ = 𝑞 (3)

¤𝑞 =
𝑀 (𝛿𝑒)
𝐼𝑦

(4)

2) Body-axes longitudinal model with the state vector X = (𝑢, 𝑤, \, 𝑞) ∈ R4

¤𝑢 =
𝑋

𝑚
− 𝑔 sin \ − 𝑞𝑤 (5)

¤𝑤 =
𝑍

𝑚
+ 𝑔 cos \ + 𝑞𝑢 (6)

¤\ = 𝑞 (7)

¤𝑞 =
𝑀 (𝛿𝑒)
𝐼𝑦

(8)

where 𝑚 and 𝐼𝑦 are the mass and the moment of inertia about pitch axis, 𝑉 is the aerodynamic velocity, 𝛾 is the flight
path angle, \ is the pitch angle, 𝑞 is the pitch rate, 𝑢 and 𝑤 are the velocity components in frame F𝐵, 𝑇 is engine thrust,
𝛿𝑒 is elevator deflection, and 𝐿, 𝐷, and 𝑀 denote the aerodynamic lift, drag, and pitch moment, respectively. The
definition of angle of attack is 𝛼 = \ − 𝛾. 𝑋 and 𝑍 represent non-gravitational forces acting along the body axes 𝑥𝐵 and
𝑧𝐵 [33], which can be written as

𝑋 = 𝑇 + 𝐿 sin𝛼 − 𝐷 cos𝛼 (9)
𝑍 = −𝐿 cos𝛼 − 𝐷 sin𝛼 (10)

The aerodynamic forces and moment are defined in terms of dimensionless lift, drag, and pitch moment coefficients
𝐶𝐿 , 𝐶𝐷 , 𝐶𝑚, the dynamic pressure 𝑄, reference wing area 𝑆, and the characteristic length 𝑐 as

𝐿 = 𝑄𝑆𝐶𝐿 , 𝐷 = 𝑄𝑆𝐶𝐷 , 𝑀 = 𝑄𝑆𝑐𝐶𝑚 (11)

where 𝑄 = 1
2 𝜌𝑉

2 and 𝜌 is the air density. The dimensionless aerodynamic coefficients can be modeled as [34–36]

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼
𝛼 + 𝐶𝐿𝑞

𝑞𝑐

2𝑉
+ 𝐶𝐿𝛿𝑒

𝛿𝑒

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝑖

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼
𝛼 + 𝐶𝑚𝑞

𝑞𝑐

2𝑉
+ 𝐶𝑚𝛿𝑒

𝛿𝑒

(12)
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where 𝐶𝐿0 , 𝐶𝐿𝛼
, 𝐶𝐿𝑞

, 𝐶𝐿𝛿𝑒
, 𝐶𝐿0 , 𝐶𝑚0 , 𝐶𝑚𝛼

, 𝐶𝑚𝑞
, 𝐶𝑚𝛿𝑒

are longitudinal derivatives, and 𝐶𝐷𝑖
denotes an induced-drag

coefficient given by

𝐶𝐷𝑖
=

𝐶2
𝐿

𝜋𝐴𝑅𝑒

where 𝐴𝑅 is the aspect ratio and 𝑒 is an efficiency factor, ranging between 0.7 and 0.85 typically.

B. Relationship between forces and local acceleration
Here we assume the body axes 𝑥𝐵 and 𝑦𝐵 define the floor plane of the aircraft and that the aircraft thrust is aligned

with the +𝑥𝐵 direction. In longitudinal motion, the “local” acceleration components expressed in the body-fixed
coordinate can be derived based on the Newton–Euler Equations as [24].

𝑎𝑥 =
𝑋

𝑚
= ¤𝑢 + 𝑞𝑤 + 𝑔 sin \, (13)

𝑎𝑧 =
𝑍

𝑚
= ¤𝑤 − 𝑞𝑢 − 𝑔 cos \. (14)

Note that the “local” acceleration is used to describe how much gravity we “feel” during flight, which can also be
interpreted as the acceleration caused by non-gravitational forces. Then we can evaluate the load factors and then define
the 𝑔-level as

𝑛𝑥 =
𝑎𝑥

𝑔
, 𝑛𝑧 =

𝑎𝑧

𝑔
, 𝑔-level (𝑔) =

√︃
𝑛2
𝑥 + 𝑛2

𝑧 . (15)

Reduced gravity is the condition in which the gravity force felt locally within the aircraft is lower than normal
gravity (1 𝑔). In our case, the direction of the force is assumed to be orthogonal to the floor of the aircraft rather than to
the flight path angle. That is, we desire zero tangential acceleration, 𝑎𝑥 = 0, and some desired normal acceleration
𝑎𝑧 = −`𝑔 (0 < ` < 1), implying that 𝑋 = 0, 𝑍 = −`𝑚𝑔. Moreover, under the small angle-of-attack assumption, (9)
and (10) can be simplified to

𝑋 ≈ 𝑇 − 𝐷 = 0
𝑍 ≈ −𝐿 = −`𝑚𝑔

(16)

Therefore, we can conclude that, during the reduced-gravity flight, thrust should be controlled to compensate for drag.
At the same time, lift needs to be regulated by adjusting the elevator to provide a certain level of gravity.

C. Non-minimum phase characteristics of the CG response to elevator inputs
The response of altitude change at the CG due to an elevator input has a non-minimum phase characteristic, which

results from the process of generating a pitch-up moment that produces a small downward force, causing the center of
gravity of an aircraft to lose altitude before going upwards [37]. The presence of non-minimum phase dynamics will
degrade the performance of controllers. Related works on the control of non-minimum phase (NMP) aircraft systems
may also be found in [38, 39]. One way to make longitudinal dynamics from elevator to the altitude of the proof mass
minimum phase is to place the proof mass in the cockpit rather than the center of gravity of an aircraft. The similar
technique was employed by Kim and Horspool [40] to convert the NMP longitudinal dynamics into a minimum phase
system.

D. Kinematics of the cockpit
The kinematics of the CG of an aircraft during zero-g flight is known to satisfy projectile motion [13, 14], which

can be expressed as

¥𝑥(𝑡) = 0, ¤𝑥(𝑡) = 𝑉0, 𝑥(𝑡) = 𝑉0𝑡

¥𝑧(𝑡) = 𝑔, ¤𝑧(𝑡) = 𝑔𝑡, 𝑧(𝑡) = 1
2𝑔𝑡

2 + 𝑧0
(17)

where (𝑥, 0, 𝑧) is the position of the CG of aircraft in frame F𝐸 . Now we would like to extend the discussion to the
motion of a rigid body in a two-dimensional plane to derive the position, velocity, and acceleration of the cockpit. (·)𝑐𝑔
and (·)𝑝 indicate the quantities at the CG and the cockpit, respectively.
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Now consider an aircraft that is rotating with angular velocity 𝝎 about its CG, and the aircraft is simultaneously
moving relative to the inertial frame (𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸), refer to Fig. 5. Then, the equations of motion of the cockpit (point 𝑝)
can be written in terms of the general expressions for relative motion (18), (19) and (20).

r𝑝 = r𝑐𝑔 + r𝑝/𝑐𝑔 (18)
v𝑝 = v𝑐𝑔 + v𝑝/𝑐𝑔 = v𝑐𝑔 + 𝝎 × r𝑝/𝑐𝑔 (19)
a𝑝 = a𝑐𝑔 + a𝑝/𝑐𝑔 = a𝑐𝑔 + ¤𝝎 × r𝑝/𝑐𝑔 + 𝝎 ×

(
𝝎 × r𝑝/𝑐𝑔

)
(20)

where r𝑝 =
(
𝑥𝑝 , 0, 𝑧𝑝

)
, v𝑝 , and a𝑝 are the position, velocity, and acceleration vectors of the cockpit with respect to the

inertial frame; r𝑐𝑔 = (𝑥, 0, 𝑧) is the position vector of the CG in frame F𝐸 ; and r𝑝/𝑐𝑔, v𝑝/𝑐𝑔, and a𝑝/𝑐𝑔 are the position,
velocity, and acceleration vectors of the cockpit as observed by the CG in frame F𝐵. We also assume that the both the
CG and the cockpit lie on the body 𝑥-axis 𝑥𝐵, meaning that r𝑝/𝑐𝑔 = (𝑑𝑥 , 0, 0), for simplicity.

Fig. 5 The fixed point 𝑝 (cockpit) in body frame is expressed in inertial frame

Here we illustrate the non-minimum phase characteristic by examining the altitude change at the CG and the
cockpit of the aircraft due to the negative elevator impulse during level flight. The model used here is a Boeing 747 in
steady-state level trimmed flight atM = 0.25 under sea-level conditions. As shown in Fig. 6a, the undershoot response
of the CG altitude change due to the elevator impulse is the characteristic of an NMP system, thus causing some delays
compared to a minimum-phase system (the cockpit’s altitude change). We can also observe in Fig. 6b that when the
elevator deflects up, the CG of an aircraft goes down initially due to the reduced lift in the CG before it climbs up. Thus,
it is better to use position error measured at the cockpit as the feedback signal to enable a minimum phase system with
elevator deflection input.

V. Development of a Control Framework for Zero-G Flight
We assume that the proof mass is placed inside a completely enclosed cavity in the cockpit; the position error

between the proof mass and the aircraft (𝑒𝑡 , 𝑒𝑛) can be measured directly by an appropriate sensing apparatus. Note
that the position error (𝑒𝑡 , 𝑒𝑛) is measured in the body-fixed frame F𝐵. In order to keep the position of the cockpit
fixed relative to free-falling proof mass, the position deviation is fed back to the controller, thus guiding the aircraft to
follow the proof mass. More specifically, we design the thrust control loop to simultaneously produce a force equal and
opposite to the drag to minimize the tangential error 𝑒𝑡 and regulate the elevator to generate the moment to eliminate the
normal error 𝑒𝑛. The closed-loop block diagram of our control framework is illustrated in Fig. 7, where 𝐶𝑇 (𝑠) and
𝐶𝑀 (𝑠) are the thrust and moment controllers, respectively.
A significant advantage of this method is that the aircraft does not follow a prescribed trajectory and tries to regulate

itself around the nominal trajectory instead. In other words, after deviating from the nominal trajectory, the perturbed
aircraft state is seen as a new initial condition for the next nominal trajectory. The reduced-𝑔 trajectory may be treated
as an infinite number of initial conditions, together merging the entire trajectory. The similar regulation technique may
also be found in [13].
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(a) CG altitude change and the cockpit altitude change (Open-loop response)

(b) The position of the CG (in blue) versus the position of the cockpit (in pink).

Fig. 6 Non-minimum phase behavior in pitch dynamics due to the elevator impulse (video link: https:
//youtu.be/-SgGtaAJZ38)

Fig. 7 Proposed control architecture for zero-gravity flight

A. Triple-integral thrust control
According to (16), we know that tracking a zero-𝑔 parabolic trajectory requires thrust force to counterbalance

aerodynamic drag 𝐷 = 𝑄𝑆𝐶𝐷 . The term 𝑄𝑆𝐶𝐷 , however, is speed-dependent and cannot be easily measured nor
estimated. Thus, we aim to develop a thrust controller that has the ability to reject the unknown drag based on the
characteristics of aerodynamic forces that evolve during parabolic flight. Recall the flight path of zero-𝑔 flight is
exactly the trajectory of a projectile (17). Based on the definition of velocity, the true airspeed can be calculated as
𝑉 =

√︁
¤𝑥2 (𝑡) + ¤𝑧2 (𝑡) =

√︃
𝑉2

0 + 𝑔2𝑡2. Also, the dynamic pressure is 𝑄 = 1
2 𝜌𝑉

2 = 1
2 𝜌

(
𝑉2

0 + 𝑔2𝑡2
)
. We find that the square

of speed is a quadratic function of time, which causes dynamic pressure and drag to grow quadratically with time. Thus,
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a triple-integral structure is adopted to counteract this unknown disturbance that is evolving quadratically with time.
Moreover, we can validate the steady-state error of the controller composed of three integrators subject to a parabolic
disturbance input by employing the Final Value Theorem

𝑒(∞) = lim
𝑡→∞

𝑒(𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

The further details regarding tracking/rejecting higher-order signals/disturbances using integrators can be found in [12]
and [41]. After realizing the necessity of the triple-integral control system, the next step is to implement this architecture
in the aircraft velocity dynamics (21):

¤𝑉 =
1
𝑚

(𝑇 cos𝛼 − 𝐷 − 𝑚𝑔 sin 𝛾) B 𝑇 − �̂� − 𝑔 sin 𝛾 (21)

We make the following assumptions when designing the thrust controller:
i) The angle of attack is small, i.e., 𝛼 ≈ 0.
ii) The derivative of the tangential position deviation can be approximated as the difference between actual and
nominal velocity, i.e., ¤𝑒𝑡 = 𝑉 −𝑉𝑜.

iii) Drag and gravitational forces are viewed as unknown disturbances, see Fig. 8.
As a result, the velocity dynamics considered in the controller design is ¤𝑉 = 𝑇

𝑚
= 𝑇 .

Fig. 8 Velocity dynamics of an aircraft

The second assumption ii) suggests that the derivative of the tangential position error is required to associate the
velocity dynamics with a control signal; we firstly define the error variables as follows:

𝑒 := 𝑒𝑡 , 𝑒1 :=
∫
𝑒, 𝑒2 :=

∬
𝑒, 𝑒3 :=

∭
𝑒, ¤𝑒 :=

d
d𝑡
𝑒 (22)

Then we select the state variables as e := (𝑒3, 𝑒2, 𝑒1, 𝑒, ¤𝑒) and by using a chain of three integrators, the error dynamics
can be represented in the state-space model (23) as

d
d𝑡



𝑒3

𝑒2

𝑒1

𝑒

¤𝑒


=



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

︸                 ︷︷                 ︸
A



𝑒3

𝑒2

𝑒1

𝑒

¤𝑒


+



0
0
0
0
1

︸︷︷︸
B

(
𝑇 − ¤𝑉𝑜

)
. (23)

One should note that the system dynamics involve the derivative of the nominal velocity ¤𝑉𝑜 = −𝑔 sin 𝛾𝑜. We,
however, can neglect the derivative of the nominal velocity as it is bounded and considered negligible compared to
the thrust contribution, which is expected to grow parabolically to compensate for drag. Thus, the state-space model
becomes a 5th-order linear system ¤e = Ae + B𝑢 where 𝑢 := 𝑇 . Now our goal is to find a state feedback law (24) to drive
the error vector to zero, i.e., e → 0. We choose

𝑇 = −Ke = −
[
𝑘𝑄 𝑘𝑅 𝑘 𝐼 𝑘𝑃 𝑘𝐷

]
e. (24)

In our case, only the tangential position error 𝑒 can be directly measured, and its first differentiation ¤𝑒 is estimated by
taking the derivative with respect to time. A differentiation operation, however, is neither causal nor realizable. Hence,
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we use a first-order approximated differentiator (APD) (25), cascading a pure differentiator and a lowpass filter (LPF),
to take the derivative of the measured position errors.

𝐺𝐴𝑃𝐷 (𝑠) = 𝑠

𝑠/ 𝑓𝑐 + 1
= 𝑠︸︷︷︸
differentiator

· 1
𝑠/ 𝑓𝑐 + 1︸    ︷︷    ︸
LPF

(25)

we can also suppress high-frequency differentiation noise by properly selecting the cut-off frequency 𝑓𝑐. Note that the
APD becomes the conventional differentiator as 𝑓𝑐 → ∞.

Fig. 9 Realization of the thrust controller (Adapted from [12])

The proposed thrust controller consists of three integrators used to reject the drag that is quadratically increasing
with time and state feedback that stabilizes the system, as shown in Fig. 9. We assumed that the tangential position error
is accessible and its derivative is estimated using APD, so the final step was to find the optimal state feedback control
gain K using LQR, such that (A − BK) is Hurwitz. Finally, we needed to calculate the optimal gain K that minimizes
the quadratic cost function

𝐽 =

∫ ∞

0

(
e𝑇Qe + 𝑢𝑇R𝑢

)
𝑑𝑡 (26)

subject to the system dynamics ¤e = Ae + B𝑢, where Q = Q𝑇 ≥ 0 and R = R𝑇 > 0 are weighting matrices to trade off
the regulation performance and control effort. The optimal feedback gain K can be derived by employing the maximum
principle [42] as K = R−1B𝑇P, where P is the solution of the algebraic Riccati equation (27).

PA + A𝑇P − PBR−1B𝑇P + Q = 0 (27)

The tracking error and control input weighting matrices are chosen, based on a Boeing 777 model characteristic, as

Q =



0.01 0 0 0 0
0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 500 0
0 0 0 0 0.01


, 𝑅 = 300.

The resulting optimal gain matrix K is
[
0.0058 0.0776 0.5185 1.8762 1.9371

]
.

B. PID-based elevator control
Under the small angle-of-attack assumption, the flight path angle is approximately equal to the pitch angle; therefore,

only pitch dynamics

¤\ = 𝑞, ¤𝑞 =
𝑀 (𝛿𝑒)
𝐼𝑦

B �̄�
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are considered when designing the moment (elevator) controller. Moreover, since the system is converted to minimum
phase by moving the reference point from the CG to the cockpit, a traditional PID controller is applied to provide
appropriate control. Thus, the pitch moment control law was determined to be

�̄� = 𝑘𝑃𝑛
𝑒𝑛 + 𝑘 𝐼𝑛

∫
𝑒𝑛 + 𝑘𝐷𝑛

d𝑒𝑛
d𝑡

(28)

where 𝑘𝑃𝑛
, 𝑘 𝐼𝑛 and 𝑘𝐷𝑛

are chosen, based on a Boeing 777 model characteristic, as 0.3, 0.5 and 3.2, respectively. The
corresponding elevator deflection can be derived based on the relationship between the pitch moment coefficient and the
elevator (12).

VI. Results and Analysis
We now present a numerical example using a Boeing 777 model [43] to illustrate and validate our proposed control

framework. We selected the initial velocity and flight path angle as (𝑉0, 𝛾0) = (600 (ft/s), 0.7854 (rad)) to derive the
corresponding nominal zero-𝑔 trajectory. The state and control trajectories are presented in the following pages, see Fig.
11.

A. Numerical simulation
Figure 10 shows the entire zero-gravity maneuver containing the pull-up, parabola, and recovery phases, however,

the controller is only employed at the parabola stage.

Fig. 10 Illustration of an entire zero-𝑔 flight maneuver: pull-up—parabola—recovery

Figure 11a shows that the velocity time history is symmetric about the time at which the aircraft reaches the top of
the parabola. It is seen that the short-period behavior is significant in the responses of the vertical velocity 𝑤, angle of
attack 𝛼, and pitch rate 𝑞. Also, the angle of attack is indeed small (about −2 degrees) during the zero-𝑔 flight maneuver,
as shown in Fig. 11b.
Figure 11c illustrates time histories of the position errors and the deviation from the nominal conditions. The

nominal trajectory was calculated from the assigned initial condition, but it was not engaged in either the thrust or
moment controller. Additionally, we can find that the tracking performance is compromised to decrease harsh changes
in the control forces and local acceleration during the transient response.
Finally, without taking any information about drag, thrust still grows quadratically with time (after entering the

steady state) to minimize the longitudinal error and counteract the quadratically increasing drag, see Fig. 11d.
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(a) Response of airspeed 𝑉 , velocity components in the body frame 𝑢, 𝑤, and change of altitude Δℎ
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(b) Response of pitch rate 𝑞, pitch angle \ , angle of attack 𝛼, and flight path angle 𝛾
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(c) Position tracking errors (𝑒𝑡 , 𝑒𝑛) and the deviation from the nominal trajectory (𝑒𝑉 , 𝑒𝛾)
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(d) Time history of control inputs U = (𝑇, 𝛿𝑒)
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(e) Time history of lift and drag forces (𝐿, 𝐷)
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(f) Responses of lift and drag forces during the last 15 seconds of the zero-g maneuver

Fig. 11 Simulation result of the zero-gravity maneuver

According to the earlier discussion (16), lift force should approach zero during the zero-𝑔 maneuver. Figure 11e and
11f illustrate the evolution of aerodynamic forces; lift remains small to minimize the non-gravitational forces 𝑍 , while
the drag increases quadratically in time, as expected.
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(a) Time history of local acceleration at the CG
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(b) Local acceleration at the CG during the last 15 seconds of the zero-g maneuver
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(c) Time history of local acceleration at the cockpit
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(d) Local acceleration at the cockpit during the last 15 seconds of the zero-g maneuver

Fig. 12 Response curves of local acceleration and 𝑔−level

The most important result of the simulation — the acceleration that passengers at the CG and the cockpit will
experience — is shown in Fig. 12. It can be seen that there is no large difference between the sensation of weight at the
CG and the cockpit. Also, we can see the normal accelerations 𝑎𝑧 and 𝑎𝑧𝑝 are affected significantly by the response
of the elevator. These undesirable initial oscillations may be reduced by properly tuning the control gains or using
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lead-lag compensation to smooth out the transient response. However, these figures still illustrate the feasibility of the
proposed control architecture. The duration of microgravity at the CG is around 20 seconds with a residual 𝑔-level
one-thousandth of Earth’s gravity.

B. FlightGear visualization
In order to visualize the flight maneuver, we have to render the location (longitude, latitude, altitude) and orientation

(roll, pitch, yaw) of the aircraft from Simulink to FlightGear [44]. Longitude and latitude can obtained by using the
navigation equations and geodetic position calculation as follows:

¤𝑥 = 𝑉 cos 𝛾 = 𝑢 cos \ + 𝑤 sin \
¤ℎ = 𝑉 sin 𝛾 = 𝑢 sin \ − 𝑤 cos \

¤𝜙 =
𝑉𝑁

𝑀 + ℎ
, ¤_ =

𝑉𝐸

(𝑁 + ℎ) cos 𝜙

where 𝑉𝑁 and 𝑉𝐸 are the geographic system North and East components of velocity in the inertial Earth frame F𝐸 . In
our case, 𝑉𝑁 is equal to ¤𝑥 and 𝑉𝐸 is equal to zero because only longitudinal motion is considered; 𝑀 and 𝑁 denote the
meridian and prime vertical radii of curvatures. For a comprehensive discussion of the geodetic coordinate, we refer to
[32] chapter 1.6. The screenshots of the zero-gravity maneuver are presented in Fig. 13.

Fig. 13 Visualization of a zero-gravity maneuver in FlightGear (video link: https://youtu.be/94dRG9IPGZg)
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VII. Conclusion
This work investigates the general concept of simulating microgravity through reduced-gravity flights. In particular,

we focus on the dynamic analysis for reduced-gravity flights and present a novel control framework for zero-gravity
flight based on the proof-mass-tracking method. We start by discussing the operating principles of reduced-gravity
flights and then study the passenger’s sensation of weight by analyzing external forces acting on an aircraft.
Most importantly, using a free-falling proof mass as an inertial reference allows us to guide an aircraft towards a

drag-free trajectory without the need for information on aerodynamic drag. In this scenario, only the position deviation
from the nominal trajectory is required to calculate the corresponding thrust and the elevator deflection. Moreover,
we place a proof mass in the cockpit rather than at the center of gravity to avoid non-minimum phase characteristics.
Consequently, a PID-based compensation is applied for the moment (elevator) controller. However, more detailed
investigation of non-minimum phase behavior needs to conducted to improve elevator control response, i.e., reduce the
oscillations that occur in transient response. At the same time, a thrust controller consisting of three integrators and
state feedback was developed based on the characteristic of drag during zero-gravity maneuver. Lastly, we perform
the numerical simulation to show the feasibility of the proposed control framework and to prove our conclusion that
thrust will increase quadratically with time to counterbalance the unknown drag and the lift force maintain small
simultaneously.

Acknowledgments
This research was funded by King Abdullah University of Science and Technology’s baseline support.

References
[1] Rogers, M. J., Vogt, G. L., and Wargo, M. J., “Microgravity: A Teacher’s Guide with Activities in Science, Mathematics, and
Technology,” Tech. rep., 1997.

[2] Karmali, F., and Shelhamer, M., “The dynamics of parabolic flight: flight characteristics and passenger percepts,” Acta
Astronautica, Vol. 63, No. 5-6, 2008, pp. 594–602.

[3] Afman, J. P., and Feron, E., “A full scale atmospheric flight experimental research environment for Titan exploration devices,”
Georgia Institute of Technology, 2019.

[4] Novespace, “NOVESPACE AND AVICO,” , 2019. URL https://www.airzerog.com/novespace-and-avico/.

[5] Zero-G, “Zero-G: Home,” , 2022. URL https://www.gozerog.com/.

[6] Pletser, V., “Are aircraft parabolic flights really parabolic?” Acta Astronautica, Vol. 89, 2013, pp. 226–228.

[7] Martin, P., “Review of NASA’s microgravity flight services,” Tech. rep., Technical Report, NASA, IG-10-015, 2010.

[8] LANGE, B., “The Drag-Free Satellite,” AIAA Journal, Vol. 2, No. 9, 1964, pp. 1590–1606. https://doi.org/10.2514/3.55086,
URL https://doi.org/10.2514/3.55086.

[9] DeBra, D. B., “Drag-free spacecraft as platforms for space missions and fundamental physics,” Classical and Quantum
Gravity, Vol. 14, No. 6, 1997, pp. 1549–1555. https://doi.org/10.1088/0264-9381/14/6/026, URL https://doi.org/10.1088/0264-
9381/14/6/026.

[10] Afman, J.-P., Franklin, J., Mote, M. L., Gurriet, T., and Feron, E., “On the Design and Optimization of an Autonomous
Microgravity Enabling Aerial Robot,” arXiv preprint arXiv:1611.07650, 2016.

[11] Afman, J.-P., Feron, E., and Hauser, J., “Maneuver Regulation for Accelerating Bodies in Atmospheric Environments,” arXiv
preprint arXiv:1708.01838, 2017.

[12] Afman, J.-P., Feron, E., and Hauser, J., “Triple-integral control for reduced-g atmospheric flight,” 2018 Annual American
Control Conference (ACC), IEEE, 2018, pp. 392–397.

[13] Kraeger, A., and van Paassen, M., “Micro-and Partial Gravity Atmospheric Flight,” AIAA Atmospheric Flight Mechanics
Conference, American Institute of Aeronautics and Astronautics Inc. (AIAA), United States, 2002, pp. 1–11. Paper 2002-4499.

[14] Hathaway, J. D., and Jacob, J. D., “Development of a Microgravity Generating Flight Mode for UAS,” AIAA Modeling and
Simulation Technologies Conference, 2016, p. 3219.

19

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ar

yl
an

d 
on

 J
an

ua
ry

 2
2,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

02
18

 

https://www.airzerog.com/novespace-and-avico/
https://www.gozerog.com/
https://doi.org/10.2514/3.55086
https://doi.org/10.2514/3.55086
https://doi.org/10.1088/0264-9381/14/6/026
https://doi.org/10.1088/0264-9381/14/6/026
https://doi.org/10.1088/0264-9381/14/6/026


[15] Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M., Hauslage, J., Hilbig, R., Hill, R. J., Lebert,
M., et al., “Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and
recommended terminology,” Astrobiology, Vol. 13, No. 1, 2013, pp. 1–17.

[16] Sanavandi, H., and Guo, W., “A magnetic levitation based low-gravity simulator with an unprecedented large functional volume,”
npj Microgravity, Vol. 7, No. 1, 2021, pp. 1–7.

[17] Mora-Camino, F., and Achaibou, A. K., “Zero-gravity atmospheric flight by robust nonlinear inverse dynamics,” Journal
of Guidance, Control, and Dynamics, Vol. 16, No. 3, 1993, pp. 604–607. https://doi.org/10.2514/3.21056, URL https:
//doi.org/10.2514/3.21056.

[18] Amato, F., Ambrosino, G., Garofalo, F., and Verde, L., “A flight control system for microgravity experiments,” [Proceedings
1992] The First IEEE Conference on Control Applications, 1992, pp. 351–353, vol.1. https://doi.org/10.1109/CCA.1992.269850.

[19] Amato, F., Ambrosino, G., Mattei, M., and Verde, L., “Design and robustness analysis of gain-scheduled control system for
parabolic flight,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, 1996, pp. 430–437. https://doi.org/10.2514/3.
21636, URL https://doi.org/10.2514/3.21636.

[20] D’Antonio, L., and Monaco, S., “A nonlinear controller for parabolic flight,” Proceedings of 32nd IEEE Conference on Decision
and Control, 1993, pp. 1513–1518 vol.2. https://doi.org/10.1109/CDC.1993.325441.

[21] Hosman, R., and Kunen, R., “Flight director guidance throughout the parabolic maneuver,” IEEE SMC’99 Conference
Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), Vol. 5, 1999, pp.
1076–1081 vol.5. https://doi.org/10.1109/ICSMC.1999.815706.

[22] Brigos, M., Perez-Poch, A., Alpiste, F., Torner, J., and González Alonso, D. V., “Parabolic flights with single-engine aerobatic
aircraft: flight profile and a computer simulator for its optimization,” Microgravity science and technology, Vol. 26, No. 4,
2014, pp. 229–239.

[23] Kraeger, A. M., “Free-Wing Unmanned Aerial Vehicle as a Microgravity Facility,” Journal of Guidance, Control, and Dynamics,
Vol. 29, No. 3, 2006, pp. 579–587. https://doi.org/10.2514/1.2274, URL https://doi.org/10.2514/1.2274.

[24] Higashino, S.-i., and Kozai, S., “Automatic microgravity flight system and flight testing using a small unmanned aerial vehicle,”
Journal of The Japan Society of Microgravity Application, Vol. 27, No. 1, 2010, p. 3.

[25] Hofmeister, P. G., and Blum, J., “Parabolic flights @ home,”Microgravity Science and Technology, Vol. 23, No. 2, 2011, pp.
191–197.

[26] Afman, J.-P., Feron, E., and Hauser, J., “Nonlinear maneuver regulation for reduced-g atmospheric flight,” 2018 IEEE
Conference on Decision and Control (CDC), IEEE, 2018, pp. 731–736.

[27] Kedarisetty, S., “Autonomous Reduced-Gravity Enabling Quadrotor Test-bed: Design, Modelling and Flight test Analysis,”
Aerospace Science and Technology, Vol. 86, 2019. https://doi.org/10.1016/j.ast.2019.01.014.

[28] Kedarisetty, S., “Model Based Robust Control and Automation Design for a Micro-Gravity Enabling Multi-Rotor Test Bed,”
AIAA Scitech 2019 Forum, 2019, p. 1171.

[29] Kedarisetty, S., and Manathara, J. G., “Acceleration control of a multi-rotor UAV towards achieving microgravity,” Aerospace
Systems, Vol. 2, No. 2, 2019, pp. 175–188.

[30] AirZeroG, “How does zero-gravity parabolic flights work?” , 2019. URL https://www.airzerog.com/zero-g-flights-how-it-
works/.

[31] European Space Agency, “Parabolic manoeuvres,” https://www.esa.int/Education/Fly_Your_Thesis/Parabolic_manoeuvres,
May 2020.

[32] Stevens, B. L., Lewis, F. L., and Johnson, E. N., Aircraft control and simulation: dynamics, controls design, and autonomous
systems, John Wiley & Sons, 2015.

[33] Nelson, R. C., et al., Flight stability and automatic control, Vol. 2, WCB/McGraw Hill New York, 1998.

[34] Etkin, B., and Reid, L. D., Dynamics of flight, Vol. 2, Wiley New York, 1959.

[35] Gavilan, F., Vazquez, R., and Acosta, J. Á., “Adaptive control for aircraft longitudinal dynamics with thrust saturation,” Journal
of guidance, control, and dynamics, Vol. 38, No. 4, 2015, pp. 651–661.

20

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ar

yl
an

d 
on

 J
an

ua
ry

 2
2,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

02
18

 

https://doi.org/10.2514/3.21056
https://doi.org/10.2514/3.21056
https://doi.org/10.2514/3.21056
https://doi.org/10.1109/CCA.1992.269850
https://doi.org/10.2514/3.21636
https://doi.org/10.2514/3.21636
https://doi.org/10.2514/3.21636
https://doi.org/10.1109/CDC.1993.325441
https://doi.org/10.1109/ICSMC.1999.815706
https://doi.org/10.2514/1.2274
https://doi.org/10.2514/1.2274
https://doi.org/10.1016/j.ast.2019.01.014
https://www.airzerog.com/zero-g-flights-how-it-works/
https://www.airzerog.com/zero-g-flights-how-it-works/
https://www.esa.int/Education/Fly_Your_Thesis/Parabolic_manoeuvres


[36] Maine, R. E., and Iliff, K. W., “Application of parameter estimation to aircraft stability and control: The output-error approach,”
Tech. rep., 1986.

[37] Tomlin, C., Lygeros, J., Benvenuti, L., and Sastry, S., “Output tracking for a non-minimum phase dynamic CTOL aircraft
model,” Proceedings of 1995 34th IEEE Conference on Decision and Control, Vol. 2, 1995, pp. 1867–1872 vol.2.
https://doi.org/10.1109/CDC.1995.480615.

[38] Hauser, J., Sastry, S., and Meyer, G., “Nonlinear control design for slightly non-minimum phase systems: Application to
V/STOL aircraft,” Automatica, Vol. 28, No. 4, 1992, pp. 665–679.

[39] Elkhatem, A., Engin, S. N., Pasha, A. A., Rahman, M. M., and Pillai, S. N., “Robust Control for Non-Minimum Phase Systems
with Actuator Faults: Application to Aircraft Longitudinal Flight Control,” Applied Sciences, Vol. 11, No. 24, 2021, p. 11705.

[40] Kim, S., and Horspool, K. R., “Nonlinear controller design for non-minimum phase flight system enhanced by adaptive elevator
algorithm,” AIAA Scitech 2020 Forum, 2020, p. 0603.

[41] Ma’arif, A., Cahyadi, A. I., Herdjunanto, S., and Wahyunggoro, O., “Tracking Control of High Order Input Reference
Using Integrals State Feedback and Coefficient Diagram Method Tuning,” IEEE Access, Vol. 8, 2020, pp. 182731–182741.
https://doi.org/10.1109/ACCESS.2020.3029115.

[42] Murray, R. M., et al., “Optimization-based control,” California Institute of Technology, CA, 2009, pp. 111–128.

[43] López Pereira, R., “Validation of software for the calculation of aerodynamic coefficients: with a focus on the software package
Tornado,” Department of Management and Engineering Linköpings universitet, 2010.

[44] Lum, C., “Visualizing the State of a Simulink Aircraft Model Using FlightGear,” , 2020. URL https://www.youtube.com/
watch?v=f8tdTiuj5lo&list=PLxdnSsBqCrrEx3A6W94sQGClk6Q4YCg-h&index=24.

21

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ar

yl
an

d 
on

 J
an

ua
ry

 2
2,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

02
18

 

https://doi.org/10.1109/CDC.1995.480615
https://doi.org/10.1109/ACCESS.2020.3029115
https://www.youtube.com/watch?v=f8tdTiuj5lo&list=PLxdnSsBqCrrEx3A6W94sQGClk6Q4YCg-h&index=24
https://www.youtube.com/watch?v=f8tdTiuj5lo&list=PLxdnSsBqCrrEx3A6W94sQGClk6Q4YCg-h&index=24

	Nomenclature
	Introduction
	Reduced-Gravity Flight Background
	Related research work in reduced-gravity aerial vehicles
	Reduced-gravity flight maneuver
	Inspiration from drag-free satellite

	Dynamic Analysis of Reduced-Gravity Flight
	Longitudinal equations of motion
	Relationship between forces and local acceleration
	Non-minimum phase characteristics of the CG response to elevator inputs
	Kinematics of the cockpit

	Development of a Control Framework for Zero-G Flight
	Triple-integral thrust control
	PID-based elevator control

	Results and Analysis
	Numerical simulation
	FlightGear visualization

	Conclusion

