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Chapter 1

Introduction

Quadrotors have been used in a wide variety of fields such as exploration, surveil-

lance, transportation and even entertainment in the past few decades due to versa-

tility and affordability.The higher maneuverability and stability is easily achieved

compared to fixed-wing aircraft and conventional helicopter due to the ability to

perform a vertical takeoff and landing (VTOL). Since Quadrotors become more

and more popular, numerous control methods have been developed for both reg-

ulation and trajectory tracking. The objective is to find a control strategy that

allows the states of a quadrotor to converge to an arbitrary set of time-varying

reference states. Though it is possible to control a quadrotor using linear control

techniques by linearizing the system around a trim point even if the quadrotor

model is coupled and highly nonlinear, nonlinear control methods are preferred

to obtain better performance. Multiple nonlinear methods such as sliding mode,

backstepping, adaptive and feedback linearization have been demonstrated to be

effective for quadrotor control. However, none of these control methods take state

and control constraints into account, we might face instability issues due to sat-

uration and violation of feasible region. Motivated by this point, the nonlinear

MPC is proposed to control the quadrotor and handle input constraints at the

same time. Also, less effort for tuning is required in MPC structure, since we can

simply put weights on states based on the degree of importance. The main draw-
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back of MPC is the computation complexity, because the optimization problem

need to be solved iteratively over a whole time period. Thanks to the development

of technology, more powerful solvers are available to cope with MPC’s computa-

tion demand.

The work is organized as follows. In Chapter 2 the mathematical model of a

quadrotor is derived. MPC is introduced in Chapter 3 with the reformulation

optimal control problem as a nonlinear programming problem. In Chapter 4 the

two numerical simulations are demonstrated to analyze the performance of the

NMPC strategy. Finally, conclusions and future work are drawn in Chapter 5.
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Chapter 2

Mathematical model of quadcopter

The quadrotor configuration is shown in Fig. 2.1, which includes the correspond-

ing angular velocities, forces and torques generated by the four rotors.

Figure 2.1: The inertial and body frames of a quadcopter [1].

The absolute linear position of the quadrotor is defined in the inertial frame

x, y, z axes with ξ. The angular position, i.e., Euler angles is defined in the

inertial frame with three Euler angles η. Pitch angle θ, roll angle ϕ and yaw

angle ψ determine the rotations around y-axis, x-axis and z-axis, respectively.

Vector q consists of the position and attitude vectors.

ξ =


x

y

z

 , η =


ϕ

θ

ψ

 , q =

 ξ

η

 , (2.1)

The origin of the body frame is in the center of mass of the quadcopter, while
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body z-axis zB is pointing vertically upward and the body x-axis xB is pointing

to rotor 1. In the body frame, the translational velocities are defined as VB and

the angular velocities as ω

VB =


u

v

w

 , ω =


p

q

r

 (2.2)

The rotation matrix from the body frame to the inertia frame is

R(η) =


CψCθ −SψCϕ + CψSθSϕ SψSϕ + CψSθCϕ

SψCθ CψCϕ + SψSθSϕ −CψSϕ + SψSθCϕ

−Sθ CθSϕ CθCϕ

 (2.3)

where Sx = sin(x) and Cx = cosx. All of the transformation matrices, including

R(η), are orthonormal, which means their inverse is equivalent to their transpose,

that is, R−1 = RT , where R−1 is the rotation matrix from the inertial frame to

the body frame. The quadcopter is assumed to be symmetric with the four arms

aligned with the body x- and y-axes. Thus, the diagonal inertia matrix I is

I =


Ix 0 0

0 Iy 0

0 0 Iz

 (2.4)

The total forces of rotors create thrust T in the direction of the body z-axis.

Torque τB is consisted of the torques τϕ, τθ and τψ in the direction of the corre-

sponding body frame angles.

TB =


0

0

T

 =


0

0∑4
i=1 fi

 (2.5)

5



τB =


τϕ

τθ

τψ

 =


(−f2 + f4)ℓ

(−f1 + f3)ℓ

(−f1 + f2 − f3 + f4)µ

 (2.6)

where ℓ is the distance between the rotor and the center of mass of the quadrotor

and µ is the drag constant. The relationship between external forces, torques and

propeller thrusts is 

T

τϕ

τθ

τψ


=



1 1 1 1

0 −ℓ 0 ℓ

ℓ 0 −ℓ 0

−µ µ −µ µ





f1

f2

f3

f4


(2.7)

2.1 Euler-Lagrange equations

The two approaches to build the mathematical model of a quadrotor are Newton-

Euler method and Euler-Lagrange method. In this study, the Lagrange method

is adopted to derive quadrotor equations of motion. A scalar function called

the Lagrangian L is introduced, which represents the difference between the total

kinetic energy T and the total potential energy U of the system. The total kinetic

energy contains the translational and rotational energies.

L = T − U = Ttrans + Trot − U

=
1

2
mξ̇T ξ̇ +

1

2
ωT Iω −mgz

(2.8)

The Euler-Lagrange equations with generalized forces and torques is written as

d

dt

(
∂L
∂q̇

)
− ∂L
∂q =

 fB

τB

 (2.9)
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The external linear force fB is the total force acted in the inertial frame. The

linear Euler-Lagrange equations are

fB = R(η)TB = mξ̈ +mg


0

0

1

 (2.10)

The transformation matrix for angular velocities from the inertial frame to the

body frame is Φ.

ω = Φη̇,


p

q

r

 =


1 0 −Sθ

0 Cϕ CθSϕ

0 −Sϕ CθCϕ



ϕ̇

θ̇

ψ̇

 (2.11)

Define the Jacobian matrix J(η) from ω to η̇ as

J(η) = J = ΦT IΦ, (2.12)

Rewrite the rotational energy in the inertia frame as

Trot =
1

2
ωT Iω =

1

2
η̇TJη̇ (2.13)

The external angular force τB is the torques of the rotors. The angular Euler-

Lagrange equations are

τB = Jη̈ + J̇η̇ − 1

2

∂

∂η

(
η̇T η̇

)
= Jη̈ + C (η, η̇) (2.14)

where the matrix C (η, η̇) is the Coriolis term, including the gyroscopic and cen-

tripetal terms. The matrix C (η, η̇) is shown in [2].

C (η, η̇) =


C11 C12 C13

C21 C22 C23

C31 C32 C33


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C11 = 0

C12 = (Iy − Iz)(θ̇CϕSϕ + ψ̇S2
ϕCθ) + (Iz − Iy)ψ̇C

2
ϕCθ − Ixψ̇Cθ

C13 = (Iz − Iy)ψ̇CϕSϕC
2
θ

C21 = (Iz − Iy)(θ̇CϕSϕ + ψ̇SϕCθ) + (Iy − Iz)ψ̇C
2
ϕCθ + Ixψ̇Cθ

C22 = (Iz − Iy)ϕ̇CϕSϕ

C23 = −Ixψ̇SθCθ + Iyψ̇S
2
ϕSθCθ + Izψ̇C

2
ϕSθCθ

C31 = (Iy − Iz)ψ̇C
2
θSϕCϕ − Ixθ̇Cθ

C32 = (Iz − Iy)(θ̇CϕSϕSθ + ϕ̇S2
ϕCθ) + (Iy − Iz)ϕ̇C

2
ϕCθ

+ Ixψ̇SθCθ − Iyψ̇S
2
ϕSθCθ − Izψ̇C

2
ϕSθCθ

C33 = (Iy − Iz)ϕ̇CϕSϕC
2
θ − Iyθ̇S

2
ϕCθSθ − Izθ̇C

2
ϕCθSθ + Ixθ̇CθSθ

(2.15)

Rearrange (2.14) yields the differential equations for the angular accelerations

η̈ = J−1(τB − C (η, η̇)) (2.16)

Rewrite the system into a compact form

ẋ = f(x(t),u(t)) (2.17)

where x denotes state variables (ξ,η, ξ̇, η̇)T and u denotes control input (f1, f2, f3, f4)T .
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Chapter 3

Model Predictive Control and
Nonlinear Programming

3.1 What is MPC?

Model predictive control (MPC), as known as receding horizon control (RHC), is

an iterative process of optimizing the predictions of states in a finite horizon.

Figure 3.1: A general MPC structure [3].

Current time step measurements and future predicted outputs are used to track

the reference over the horizon. The future prediction is based on the knowledge
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of system model. At current time step k, the optimal control sequence over the

horizon is calculated by minimizing the cost function. Only the first step of

the control sequence is implemented, then the plant state is measured again and

the optimization is repeated starting from the updated current state, yielding a

new control action and new predicted state trajectory. The prediction horizon

keeps being shifted forward and can therefore be called as a receding horizon.

In conclusion, the three main components in MPC strategy are prediction using

system model, online optimization and receding implementation.

3.2 Mathematical Formulation of MPC

First, a running costs ℓ(x,u) is defined to characterizes the control objective,

which generally involves the difference between the measured and reference states

and penalization of control actions.

ℓ(x,u) = ∥xu − xr∥2Q + ∥u − ur∥2R (3.1)

where where Q and R are the weight matrices specifying the weights on tracking

the reference states and penalizing the control input, respectively. The higher

weight means that tracking a certain state or penalizing of an input is deemed

more important.

The cost function JN is the evaluation of the running costs along the whole hori-

zon, which is minimized over the horizon.

JN(x,u) =
N−1∑
k=0

ℓ(xu(k),u(k)) (3.2)
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A general formulation [4] for an MPC optimal control problem (OCP) is

min
u

JN(x0,u) =
N−1∑
k=0

ℓ(xu(k),u(k))

subject to xu(k + 1) = f(xu(k),u(k))

xu(0) = x0

xu(k) ∈ X , ∀ k ∈ [0, N ]

u(k) ∈ U , ∀ k ∈ [0, N − 1]

(3.3)

where the states and control inputs are within sets X and U

X := {x ∈ Rn |
¯
x ≤ x ≤ x̄}

U := {u ∈ Rm |
¯
u ≤ u ≤ ū}

(3.4)

The current time step is t and the horizon is denoted by N . Notice that the

optimization problem is subject to the system dynamics xu(k+1) = f(xu(k),u(k)).

3.3 Numerical Methods to Optimal Control Problem

In general, there are three major methods to solve optimal control problems [5],

dynamic programming, indirect and direct methods Fig. 3.2.

(a) Dynamic Programming (DP) uses the principle of optimality to compute

a feedback control recursively and to solve so called the Hamilton-Jacobi-

Bellman (HJB) equation, a partial differential equation (PDE) in state space.

(b) Indirect methods use the necessary conditions of optimality of the infinite

problem to derive a boundary value problem (BVP) in ordinary differential

equations (ODE). The well-known calculus of variations, the Euler-Lagrange

equations, and the Pontryagin Maximum Principle (PMP) are classified in

this group.

(c) Direct methods cast the original optimal control problem (OCP) as a non-

linear programming problem (NLP). All direct methods are based on a finite
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dimensional parameterization of the control trajectory, but handle the state

trajectory in different ways.

Figure 3.2: Overview of numerical methods for optimal control [5].

3.3.1 Nonlinear Programming

For online NMPC the nonlinear programming problem must be solved numerically

at every sampling interval, thus the optimal control problem (OCP) (3.4) needs

to be formulated as a Nonlinear Programming problem (NLP) (3.5).

min
z

f(z)

subject to z ∈ Z

g(z) ≤ 0

h(z) = 0

(3.5)

The optimization problem is rewritten as a function of a set of decision variables

z. The objective function f(z) is the mapping from decision variables z to cost

function JN . Once NLP formulation is obtained, the NLP can be solved by

existing NLP solvers, e.g. CVX, CasADi. In this study, a direct multiple shooting
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method was chosen to address NMPC, in which the model dynamics is discretized

in a uniform time interval. Since a multiple shooting is more numerically stable

and guarantees better convergence of NLPs typically.

Figure 3.3: Relationship between OCP and NLP [6].

3.3.2 Implementation and Multiple Shooting

In multiple shooting, not only control variables u but also state variables x are

treated as decision variables z within the NLP, in which system dynamics is

imposed as equality condition to ensure continuity [4]. The state trajectory is dis-

cretized at the boundaries of each control interval and the control input is kept

constant in each shooting interval, see Fig. 3.4(b). Now we have decision variables

u1,u2, . . . , uN and x1, x2, . . . , xN+1. The start state xk and a fixed control input

uk are known in each shooting interval k, so that the state at the next interval

xk+1 can be predicted by numerical integration.

(a) Continuous state and control (b) Discretized state and control (c) Integrated state trajectories

Figure 3.4: Illustration of multiple shooting [7].

In Fig. 3.4(c), we found that there is a mismatch between where the integrator

says we will end up and where our state decision variables think we are. Thus,
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continuity constraints are imposed to make the gap zero.

xk+1 − x̂k+1 = 0 (3.6)

A fourth-order Runge-Kutta approach is chosen to integrate ODE to obtain the

state at the next time step xk+1 with sampling time h. An interior point method

(IPM) is used to solve the NLP obtained from multiple shooting approach.

x̂k+1 = xk +
h

6
(R1 + 2R2 + 2R3 +R4)

R1 = f(tk.xk)

R2 = f(tk + h/2, xk +R1/2)

R3 = f(tk + h/2, xk +R2/2)

R4 = f(tk + h, xk +R3)

(3.7)

The interior point method is applied using the Interior Point OPTimizer (IPOPT)

solver in CasADi [6]. CasADi is an open-source tool for nonlinear optimization

and algorithmic differentiation. It facilitates rapid yet efficient implementation of

different methods for numerical optimal control, both in an offline context and

for nonlinear model predictive control (NMPC) [8].
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Chapter 4

Numerical Simulation

4.1 NMPC of a Quadrotor Control

The dynamica model of a quadrotor is given by (2.10) and (2.16). The NMPC

problem for quadrotor is formulated as

min
u

N−1∑
k=0

∥xu − xr∥2Q + ∥u − ur∥2R

subject to xk+1 = f(x(k),u(k))

x(t0) = x0

0 ≤ u(k) ≤ 15

(4.1)

The penalty on state error for x, y, z, ψ are 50 and 20. The penalty on state

error for ϕ, θ and all control inputs are 1. The quadrotor parameters used in

the simulation are given by: mass m = 1 kg, gravity g = 9.81m/s2, moment

of inertia Ix = Iy = 1.2 kg · m2, Iz = 2 kg · m2, length of arm ℓ = 0.25m, drag

coefficient µ = 0.2. The NMPC simulation parameters are as follows: prediction

horizon N = 30 and sampling time Ts = 0.1 s. We demonstrate two different

flight missions, i.e., position stabilization and trajectory tracking, in the following

sections.

4.1.1 Position Stabilization

The control objective of position stabilization is to steer the system from the

origin to the target point (x, y, z) = (18, 0, 5). The state and control trajectories
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are shown in Fig. 4.0 and Fig. 4.1, respectively.
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(f) Yaw angle ψ

Figure 4.0: State trajectories

It is found that the control inputs, i.e., propeller thrust, operate within limita-

tion over the whole time, proving that NMPC is capable of handling constraints,
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as shown in Fig.4.1(a).
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(a) Control inputs (properller thrusts)

(b) 3D trajectory

Figure 4.1: Position Stablization

4.1.2 Trajectory Tracking

The control objective of trajectory tracking is to make the system follow the given

time-varying trajectory. Here we introduced three different scenarios.
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(i) Circular trajectory tracking: The quadrotor is required to be controlled along

a circular path described as follows: r =
[
8 sin(t/3) 8 cos(t/3) 10

]T
.

(a) 3D trajectory
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(b) Control inputs (properller thrusts)

Figure 4.2: Circular trajectory tracking
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(ii) Helix trajectory tracking: The quadrotor is required to be controlled along

a helix path described as follows: r =
[
8 sin(0.3t) 8 cos(0.3t) 0.15t

]T
.

(a) 3D trajectory
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(b) Control inputs (properller thrusts)

Figure 4.3: Helix trajectory tracking
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(iii) Complex helix trajectory tracking: The quadrotor is required to be controlled

along a helix path described as follows:

r =
[
15(sin(0.2t)− (sin(0.2t))3) 15(cos(0.2t)− (cos(0.2t))3) 0.15t

]T
.

(a) 3D trajectory

(b) 3D trajectory
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(c) Control inputs (properller thrusts)

Figure 4.4: Complex helix trajectory tracking

From above simulation results, as shown in Fig. 4.2, Fig. 4.3 and Fig. 4.4, the

NMPC had the ability to stabilize the quadrotor on the desired trajectory, and

to keep the control inputs in the operation range over a whole time interval si-

multaneously. The results demonstrated that the implemented MPC can achieve

satisfactory performance and handle constraints, which is more practicable com-

pared to conventional control methods.

21



Chapter 5

Conclusion

In this study, a nonlinear MPC controller is developed to achieve trajectory track-

ing for a quadrotor subject to input constraints. The optimal control problem

is transformed into a nonlinear programming problem using multiple shooting

method, which requires less computational effort and provides higher numerical

stability. The IPOPT solver of the open-source optimal tool CasADi is used to

solve the nonlinear programming problem in an efficient way. Multiple flight sce-

narios were performed to show the NMPC address the control problem in high

performance.

5.1 Future Work

The closed-loop of the quadrotor was not guranteed in every desired trajectories.

The stability issue involves the initial condition, selection of terminal constraints

and length of prediction horizon. Therefore, more systematic stability analysis

should be furthered investigated to improve reliability. Also, the model uncer-

tainty is always existed in real world, the approach to alleviate the influence of

model error should be studied.
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